Molecular Bases for the Asynchronous Activation of Sodium and Potassium Channels Required for Nerve Impulse Generation

نویسندگان

  • Jérôme J. Lacroix
  • Fabiana V. Campos
  • Ludivine Frezza
  • Francisco Bezanilla
چکیده

Most action potentials are produced by the sequential activation of voltage-gated sodium (Nav) and potassium (Kv) channels. This is mainly achieved by the rapid conformational rearrangement of voltage-sensor (VS) modules in Nav channels, with activation kinetics up to 6-fold faster than Shaker-type Kv channels. Here, using mutagenesis and gating current measurements, we show that a 3-fold acceleration of the VS kinetics in Nav versus Shaker Kv channels is produced by the hydrophilicity of two "speed-control" residues located in the S2 and S4 segments in Nav domains I-III. An additional 2-fold acceleration of the Nav VS kinetics is provided by the coexpression of the β1 subunit, ubiquitously found in mammal tissues. This study uncovers the molecular bases responsible for the differential activation of Nav versus Kv channels, a fundamental prerequisite for the genesis of action potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Determining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?

This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...

متن کامل

Determining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?

This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Impulse encoding mechanisms of ganglion cells in the tiger salamander retina.

A study of nerve impulse generation in ganglion cells of the tiger salamander retina is carried out through a combination of experimental and analytic approaches, including computer simulations based on a single-compartment model. Whole cell recordings from ganglion cells were obtained using a superfused retina-eyecup preparation and studied with pharmacological and electrophysiological techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2013